## 1996

## **American Chemical Society High School Chemistry Scholarship Examination**

Reminder: Choose the single best answer in each of the following.

| 1. Which one of the following is the largest distance? |            |
|--------------------------------------------------------|------------|
| a. 10 μL                                               | MEASUREHEN |
| b. 2 km                                                |            |
| c. $1 \times 10^4 \text{ mm}$                          |            |
| d 1 kPa                                                |            |

- 2. When the number 0.0640510 is rounded to three significant figures, it is reported as:
  - a. 0.06 b. 0.064
  - c. 0.0641

  - d. 0.06405
- 3. Report the answer to the following mathematical operations using the correct number of significant figures.

TEMENDARIH

QUANTUM

MEASUREHENT

- a. 0.9
- b. 0.91
- c. 0.908
- d. 0.9082
- 4. The yellow light emitted by a sodium vapor lamp has a wavelength equal to 589 nm. What is the frequency of this radiation?
  - a.  $5.09 \times 10^{14} \, \text{s}^{-1}$
  - b.  $1.96 \times 10^3 \text{ s}^{-1}$

  - c. 0.0509 s<sup>-1</sup> d. 1.96 x 10<sup>-15</sup> s<sup>-1</sup>

| 5. Which of the following are chemical chang (I) baking bread (II) melting solder (III) breaking of glass                                                                                                                                                        | es? (IV) dissolving sugar in water (V) lighting a match           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| a. I, V<br>b. II, III, IV<br>c. I, II, V<br>d. II, IV, V                                                                                                                                                                                                         | VOCABILLARY                                                       |
| 6. How many square inches are in 53.6 m <sup>2</sup> ?  a. 3.46 x 10 <sup>2</sup> in <sup>2</sup> b. 4.68 x 10 <sup>4</sup> in <sup>2</sup> c. 8.31 x 10 <sup>4</sup> in <sup>2</sup> d. 2.11 x 10 <sup>3</sup> in <sup>2</sup>                                  | HEASIMAN                                                          |
| <ol> <li>How many protons, neutrons, and electron</li> <li>a. 24 protons, 29 neutrons, 27 electron</li> <li>b. 24 protons, 26 neutrons, 21 electron</li> <li>c. 24 protons, 29 neutrons, 21 electron</li> <li>d. 29 protons, 24 neutrons, 26 electron</li> </ol> | S ATOMIC<br>S STRUCTURE                                           |
| <ul> <li>8. Which one of the following formulas corre</li> <li>a. BaSO<sub>3</sub> barium sulfite</li> <li>b. KSO<sub>4</sub> potassium sulfate</li> <li>c. Na<sub>2</sub>S disodium hyposulfite</li> <li>d. CuSO<sub>4</sub> copper(I) sulfate</li> </ul>       | ectly matches its name?                                           |
| 9. An element X combines with sulfur to form                                                                                                                                                                                                                     | m a compound having the formula X <sub>2</sub> S <sub>3</sub> . X |
| could be:  a. Ba b. Rb c. Si d. Al                                                                                                                                                                                                                               | FORMULA                                                           |
| 10. The normal boiling point of liquid nitrogen in °F?                                                                                                                                                                                                           | en is 77.35 K. What is the boiling point of                       |
| a76.78 °F<br>b171.2 °F<br>c320.4 °F<br>d384.4 °F                                                                                                                                                                                                                 | ENERGY                                                            |
|                                                                                                                                                                                                                                                                  |                                                                   |

| <ul><li>11. What is the formula of iron (II) hydrogen phosphate?</li><li>a. Fe(HPO<sub>4</sub>)<sub>2</sub></li></ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b. FeHPO <sub>4</sub>                                                                                                 | FURHINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| c. Fe(H <sub>2</sub> PO <sub>4</sub> ) <sub>2</sub>                                                                   | Pantal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| d. Fe <sub>2</sub> HPO <sub>4</sub>                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12. What is the correct formula for the compound magnesium nitrate?                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a. Mg(NO <sub>3</sub> ) <sub>2</sub>                                                                                  | gan;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| b. MgNO <sub>2</sub>                                                                                                  | Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| c. Mg(NO <sub>2</sub> ) <sub>3</sub>                                                                                  | and the second s |
| d. $Mn(NO_3)_2$                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13. What is the correct empirical formula of the compound C <sub>8</sub> H <sub>16</sub> O <sub>4</sub> ?             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a. C <sub>4</sub> H <sub>8</sub> O <sub>2</sub>                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| b. C <sub>8</sub> H <sub>16</sub> O <sub>4</sub>                                                                      | FORMULA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| c. C <sub>2</sub> H <sub>4</sub> O <sub>2</sub>                                                                       | - *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| d. C <sub>2</sub> H <sub>4</sub> O                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| d. C <sub>2</sub> 140                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14. If 0.50 mole C <sub>8</sub> H <sub>16</sub> O <sub>4</sub> is completely decomposed into its constituer           | nt elements, how                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| many moles of hydrogen gas (H <sub>2</sub> ) would be produced?                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| a. 16.0 moles                                                                                                         | HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| b. 8.0 moles                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| c. 4.0 moles                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| d. 0.5 moles                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15. If 0.50 mole C <sub>8</sub> H <sub>16</sub> O <sub>4</sub> is completely decomposed into its constitue            | nt elements, how                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| many grams of carbon would be produced?                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a. 96 g                                                                                                               | KOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| b. 48 g                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| c. 4.8 g                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| d. 4.0 g                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16. What is the formula mass of magnesium phosphite, Mg <sub>3</sub> (PO <sub>3</sub> ) <sub>2</sub> ?                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a. 71.7                                                                                                               | Hove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| b. 182.3                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| c. 230.9                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| d. 309.9                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17. When 33.0 mg of an unknown compound was submitted for elem                                                        | ental analysis, it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| contained 21.60 mg carbon (C), 3.00 mg hydrogen (H), and 8.40 mg                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| is the empirical formula of this unknown compound?                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>→</b>                                                                                                              | MOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A Camen                                                                                                               | Lat of Chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| a. C <sub>3</sub> H <sub>5</sub> N<br>b. C <sub>2</sub> oH <sub>2</sub> N <sub>2</sub> c                              | in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| b. C <sub>1.8</sub> H <sub>3</sub> N <sub>0.6</sub>                                                                   | de promotion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 18. When the equation be chloride (BaCl <sub>2</sub> )? | low is properly bala                                          | nced, what is the c                      | coefficient of barium         |
|---------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|-------------------------------|
| •                                                       | ) + Ba <sub>3</sub> (PO <sub>4</sub> ) <sub>2(aq)</sub> —     | $\Rightarrow$ AlPO <sub>4(s)</sub> + BaO | Cl <sub>2(aq)</sub> REACTIONS |
|                                                         |                                                               | duced?                                   | _                             |
| a. 0.600 g<br>b. 0.798 g<br>c. 1.200 g<br>d. 33.51 g    |                                                               |                                          | STOICHIONETRY                 |
| 20. When 14.0 g cyclohes C <sub>6</sub> H <sub>1</sub>  | cane reacts with 14.<br>$_{2(s)} + Cl_{2(g)} \longrightarrow$ | _                                        | Cl(g)                         |
|                                                         | Substance                                                     | Molecular<br>weight                      |                               |
|                                                         | C <sub>6</sub> H <sub>12</sub>                                | 84.0                                     |                               |
|                                                         | Cl <sub>2</sub>                                               | 70.9                                     |                               |
|                                                         | C <sub>6</sub> H <sub>11</sub> Cl                             | 118.5                                    |                               |
| What is the maximum num                                 | mber of grams of ch                                           | llorocyclohexane t                       | that could be produced?       |
| a. 19.75 g<br>b. 21.00 g                                |                                                               |                                          | STOUGHOUSTRY                  |

21. How many grams of calcium bromide (CaBr<sub>2</sub>, MW = 200.) must be used to prepare

22. What is the concentration of the final solution when 500. mL of 0.400 M CaBr<sub>2</sub>

SUCUTIONS

S CLOTIONS

c. 23.40 g d. 43.15 g

a. 20.0 g

b. 40.0 g c. 60.0 g d. 80.0 g

solution is diluted to 1.60 L?

a. 0.125 M

b. 0.400 M c. 1.28 M d. 25.0 M

500. mL of 0.400 M CaBr<sub>2</sub> solution?

- 23. What is the concentration of the solution obtained when 200. mL of a 0.600 M solution of sulfuric acid (H<sub>2</sub>SO<sub>4</sub>, MW = 98.1) is added to 400. mL of a 1.2 M solution of sulfuric acid to make a total volume of 600. mL?
  - a. 0.200 M
  - b. 0.800 M
  - c. 0.480 M
  - d. 1.00 M
- 24. What is the concentration of a solution of hydrochloric acid if 37.50 mL of a 0.200 M solution of sodium hydroxide is necessary to neutralize a 50.00 mL aliquot?

| Substance | Molecular |  |
|-----------|-----------|--|
|           | weight    |  |
| HCl       | 36.5      |  |
| NaOH      | 40.0      |  |



SOLUTIONS

- a. 0.267 M
- b. 0.205 M
- c. 0.188 M
- d. 0.150 M
- 25. Which of the following 0.10 M aqueous solutions would have the lowest freezing point?
  - a. KBr
  - b. Na<sub>2</sub>SO<sub>4</sub>
  - c. NaNO<sub>3</sub>
  - d. MgSO<sub>4</sub>
- 28. Which of the following describes bromine at room temperature?
  - a. reddish-brown liquid
  - b. greenish-yellow liquid
  - c. greenish-yellow gas
  - d. violet gas

Solurious

PERIODIC TABLE 29. Given the following two reactions:

$$C_{\text{(graphite)}} + O_{2(g)} \longrightarrow CO_{2(g)}$$

$$\Delta H = -393.5 \text{ kJ}$$

$$2 \operatorname{Fe}_{(s)} + 3/2 \operatorname{O}_{2(g)} \longrightarrow \operatorname{Fe}_2 \operatorname{O}_{3(s)}$$

$$\Delta H = -824.2 \text{ kJ}$$

Calculate the enthalpy change for

$$2 \text{ Fe}_2\text{O}_{3(s)} + 3 \text{ C}_{(graphite)} \rightarrow 4 \text{ Fe}_{(s)} + 3 \text{ CO}_{2(g)}$$

a. 
$$\Delta H = +467.9 \text{ kJ}$$

b. 
$$\Delta H = -467.9 \text{ kJ}$$

c. 
$$\Delta H = +430.7 \text{ kJ}$$

d. 
$$\Delta H = -430.7 \text{ kJ}$$

30. The symbol for cesium is

b. Cm

c. Cs

d. Se



- 31. What do phosphorus, sulfur and oxygen have in common?
  - a. outer shell electron configuration

b. pyrophoric behavior

c. semimetallic behavior

d. existence of allotropic forms



32. What is the name of the product of the following reaction:

$$2 K_{(s)} + O_{2(g)} \longrightarrow K_2O_{2(s)}$$

- a. potassium dioxide
- b. potassium peroxide
- c. potassium oxide
- d. potassium superoxide

- FORMULA
- 33. What is the temperature change when 4.00 g Fe absorbs 55.5 J?

[specific heat of Fe = 
$$0.4998 \text{ J/g} \cdot ^{\circ}\text{C}$$
]

- a. 27.8°C
- b. 55.5°C
- c. 111.0°C
- d. insufficient information

ENERGY

| 34. The combustion of methane is given by the following reaction:                                                                                                                                                                                                                                                      |                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| $CH_{4(g)} + 2 O_{2(g)} \longrightarrow CO_{2(g)} + 2 H_2O_{(aq)}$                                                                                                                                                                                                                                                     | $\Delta H = -890.4 \text{ kJ}$ |
| How much heat is evolved in the combustion of 2.00 g methane?  a. 55.7 kJ  b. 111 kJ  c. 890. kJ  d. 1780 kJ                                                                                                                                                                                                           | STOCHIOHETRY                   |
| <ul> <li>35. Which one of the following electron configurations represents Cr</li> <li>a. [Ar]4s<sup>2</sup>3d<sup>4</sup></li> <li>b. [Ar]4s<sup>2</sup>3d<sup>2</sup></li> <li>c. [Ar]3d<sup>4</sup></li> <li>d. [Ar]3d<sup>2</sup></li> </ul>                                                                       | ELECTRUM CONFIRMATILY          |
| 36. Which of the following most likely represents a negative entropy a. $H_2O_{(aq)} \longrightarrow H_2O_{(g)}$ b. $MgCO_{3(s)} \longrightarrow MgO_{(s)} + CO_{2(g)}$ c. $Zn_{(s)} + 2 HCl_{(aq)} \longrightarrow ZnCl_{2(aq)} + H_{2(g)}$ d. $NaCl_{(aq)} + AgNO_{3(aq)} \longrightarrow NaNO_{3(aq)} + AgCl_{(s)}$ | change?                        |
| 38. Which of the following elements has the lowest first ionization en a. antimony b. arsenic c. nitrogen d. phosphorus                                                                                                                                                                                                | PERIODIC TYUENDS               |
| 39. Which of the following isoelectronic species is the largest?                                                                                                                                                                                                                                                       | s south a Ph                   |
| Kr Rb <sup>+</sup> Se <sup>2-</sup> Sr <sup>2+</sup> a. Kr b. Rb <sup>+</sup> c. Se <sup>2-</sup> d. Sr <sup>2+</sup>                                                                                                                                                                                                  | PERIODIC TRENDS                |

40. The chemical properties of an element correlate best with

- a. its state of matter.
- b. ionic radii.
- c. atomic weight.
  d. electron configuration.

| 41. Arrange the following radiation in order of increasing energy microwave ultraviolet green light orange light                                                                                                                                                                                                   | <del></del>             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| <ul> <li>a. microwave &lt; orange light &lt; green light &lt; ultraviolet</li> <li>b. ultraviolet &lt; microwave &lt; green light &lt; orange light</li> <li>c. orange light &lt; green light &lt; microwave &lt; ultraviolet</li> <li>d. ultraviolet &lt; green light &lt; orange light &lt; microwave</li> </ul> | QUANTUM                 |
| 42. Which of the following bonds is the most polar?                                                                                                                                                                                                                                                                |                         |
| a. H-H                                                                                                                                                                                                                                                                                                             |                         |
| b. H-C                                                                                                                                                                                                                                                                                                             | VSEPR                   |
| c. C-F                                                                                                                                                                                                                                                                                                             |                         |
| d. C-Cl                                                                                                                                                                                                                                                                                                            |                         |
| 43. Which of the following compounds is most ionic?                                                                                                                                                                                                                                                                |                         |
| a. N <sub>2</sub> O                                                                                                                                                                                                                                                                                                |                         |
| a. Cl <sub>2</sub> O <sub>7</sub>                                                                                                                                                                                                                                                                                  | USEPP BONDING           |
| a. P2O5                                                                                                                                                                                                                                                                                                            |                         |
| a. Na <sub>2</sub> O                                                                                                                                                                                                                                                                                               |                         |
| 44. Which of the following terms best describes CaO?                                                                                                                                                                                                                                                               |                         |
| a. an acidic oxide                                                                                                                                                                                                                                                                                                 | 0                       |
| b. a basic oxide                                                                                                                                                                                                                                                                                                   | Peruspie :<br>TABLE     |
| c. an amphoteric oxide                                                                                                                                                                                                                                                                                             | TAGE                    |
| d. a neutral oxide                                                                                                                                                                                                                                                                                                 |                         |
|                                                                                                                                                                                                                                                                                                                    |                         |
| 45. Which element below has the most metallic character?                                                                                                                                                                                                                                                           |                         |
| a. As                                                                                                                                                                                                                                                                                                              | 0                       |
| b. Sb                                                                                                                                                                                                                                                                                                              | PERLIADIC<br>TABLE      |
| c. P<br>d. Bi                                                                                                                                                                                                                                                                                                      | TASCE                   |
| u. Bi                                                                                                                                                                                                                                                                                                              |                         |
| 46. Which elements combine with the alkali metals to form ion                                                                                                                                                                                                                                                      | nic compounds?          |
| a. alkaline earth metals                                                                                                                                                                                                                                                                                           | 7                       |
| b. d-transition series elements                                                                                                                                                                                                                                                                                    | (equippe                |
| c. noble gases                                                                                                                                                                                                                                                                                                     | TABLE                   |
| d. halogens                                                                                                                                                                                                                                                                                                        | a c son man             |
| 47. What is the formal charge on the indicated nitrogen in the N=N=O                                                                                                                                                                                                                                               | neutral molecule below? |
| a. 0                                                                                                                                                                                                                                                                                                               |                         |
| b1                                                                                                                                                                                                                                                                                                                 |                         |
| c. +1                                                                                                                                                                                                                                                                                                              |                         |
| d. +2                                                                                                                                                                                                                                                                                                              |                         |
|                                                                                                                                                                                                                                                                                                                    |                         |

| 48. What do the following speci | ies have i | n comm | on?     |
|---------------------------------|------------|--------|---------|
|                                 | $CS_2$     | $CO_2$ | $CH_2O$ |
| a. All are gases are room       | temperat   | ure.   |         |

VSEPR

- b. All contain pi (p) bonding.
- c. All are isoelectronic with each other.
- d. All have no dipole moment.
- 49. How many lone pairs are found in the entire molecule PBr<sub>5</sub>?

VISEPR

- a. none
- b. 5
- c. 15
- d. 20
- 50. A molecule has the following properties:

The molecule contains two different halogens.

The molecule has no dipole moment.

The molecule does not form hydrogen bonds.

USEFR

What molecule could it be?

- a. OF<sub>2</sub>
- b. IBr<sub>3</sub>
- c. PCl<sub>2</sub>Br
- d. IBr4
- 51. Predict the order for increasing O-O bond energy of the species

$$O_2 O_2^+ O_2^{2-}$$

VSEPR

a. 
$$O_2 < O_2^{2^-} < O_2^+$$
  
b.  $O_2^+ < O_2^{2^-} < O_2$   
c.  $O_2 < O_2^+ < O_2^{2^-}$   
d.  $O_2^{2^-} < O_2 < O_2^+$ 

c. 
$$O_2 < O_2^{+} < O_2^{2}$$

d. 
$$O_2^2 < O_2 < O_2^2$$

- 52. Pi bonding can be found in which of the following?
- VSEPR

- a. carbon monoxide
- b. acetone
- c. sulfur dioxide
- d. All of the above molecules contain pi bonding.

53. Linear geometry best describes which of the following molecules?

- a. acetylene (C<sub>2</sub>H<sub>2</sub>)
- b. ozone (O<sub>3</sub>)
- c. hydrogen peroxide
- d. All of the above molecules are linear.

54. How many sigma and pi bonds does formaldehyde (CH<sub>2</sub>O) have?

- a. 3 sigma bonds and no pi bond
- b. 3 sigma bonds and 1 pi bond
- c. 2 sigma bonds and 1 pi bond
- d. 2 sigma bonds and 2 pi bonds

55. A molecule can be described by the following major characteristics:

The molecule contains at least one sp<sup>2</sup> hybrid orbital.

The molecule contains at least one sp hybrid orbital.

The molecule contains no triple bonds.

Which molecule could it be?

USEPR

USEPR

USEPR

- a. C<sub>2</sub>H<sub>2</sub> (acetylene)
- b. C<sub>3</sub>H<sub>4</sub> (allene)
- c. C<sub>6</sub>H<sub>6</sub> (benzene)
- d. C<sub>6</sub>H<sub>5</sub>OH (phenol)

58. If 148 g SnO<sub>2</sub> (MW = 150.69) are reacted with excess carbon at 0°C and 1.0 atm, what volume of carbon dioxide is evolved?

$$SnO_{2(s)} + C_{(s)} \longrightarrow CO_{2(g)} + Sn_{(s)}$$

- a. 1.0 L
- b. 11 L
- c. 22 L
- d. 150 L

STOCHIOMETRY GAS HWS

The following information applies to questions 60 and 61.

An experiment is performed in which 1.0 J of heat is added to 10. g ethanol ( $C_2H_5OH$ ). The same amount of heat is added to 10. g benzene ( $C_6H_6$ ) and the following temperature changes are observed:

| Substance | ΔΤ       |
|-----------|----------|
| ethanol   | +0.041 K |
| benzene   | +0.057 K |

ENHW

- 60. Which compound has the larger specific heat?
  - a. ethanol
  - b. benzene
  - c. They have the same specific heat.
  - d. It cannot be determined from the information given.
- 61. Which has the larger molar heat capacity?
  - a. ethanol
  - b. benzene

ENERMY

- c. They have the same molar heat capacity.
- d. It cannot be determined from the information given.
- 63. If 1.0 L each of oxygen and hydrogen are reacted at constant temperature and pressure, how much water vapor will be produced?
  - a. 1.0 L
  - b. 2.0 L
  - c. 0.5 L
  - d. 4.0 L

STOICHIONENCY

- 66. The rise of a liquid in a thin tube against the force of gravity is called
  - a. capillary action.
  - b. dispersion forces.
  - c. surface tension.
  - d. viscosity.

BONDING

- 70. An aqueous solution of calcium chloride is 15.0% by mass CaCl<sub>2</sub>. If the solution has a density of 1.12 g/mL, what is the molarity of the solution?
  - a. 1.28 M
  - b. 1.35 M
  - c. 1.51 M
  - d. 1.68 M

SOLUTIONS

- 72. An endothermic process always
  - a. corresponds to a negative enthalpy change.
  - b. involves an absorption of heat by the system.
  - c. corresponds to a temperature increase.
  - d. involves a release of heat by the system.

ENEKA

The following reaction applies to questions 91 and 92.

$$14 \text{ H}^+ + \text{Cr}_2\text{O}_7^{2-} + 3 \text{ Ni} \longrightarrow 3\text{Ni}^{2+} + 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$$

- 91. Identify the oxidizing agent in the reaction above.
  - a. H
  - b. Cr<sub>2</sub>O<sub>7</sub><sup>2</sup>-
  - c. Ni
  - d. Cr3+
- 92. Which substance is oxidized in the reaction above.
  - a. H
  - b. Cr<sub>2</sub>O<sub>7</sub><sup>2</sup>
  - c. Cr<sup>3+</sup>
  - d. Ni

CEACTIONS

REACTIONS

- 93. What is the oxidation number of manganese in KMnO<sub>4</sub>?
  - a. +3
  - b. +5
  - c. +7
  - d. +9

- FURMULA
- 94. What is the stoichiometric coefficient for ZnS(s) in the following equation when it is correctly balanced? Assume acidic conditions.

 $ZnS_{(s)} + NO_{3(aq)} \longrightarrow Zn^{2+}_{(aq)} + S_{(s)} + NO_{(g)}$ 

- a. 1
- b. 2
- c. 3
- d. 4



- 95. What is the oxidation number of gold in K<sub>3</sub>[Au(CN)<sub>4</sub>]?
  - a. +1
  - b. +2
  - c. +3
  - d. +4

(LEACTION)

FOUND