1996 ## **American Chemical Society High School Chemistry Scholarship Examination** Reminder: Choose the single best answer in each of the following. | 1. Which one of the following is the largest distance? | | |--|------------| | a. 10 μL | MEASUREHEN | | b. 2 km | | | c. $1 \times 10^4 \text{ mm}$ | | | d 1 kPa | | - 2. When the number 0.0640510 is rounded to three significant figures, it is reported as: - a. 0.06 b. 0.064 - c. 0.0641 - d. 0.06405 - 3. Report the answer to the following mathematical operations using the correct number of significant figures. TEMENDARIH QUANTUM MEASUREHENT - a. 0.9 - b. 0.91 - c. 0.908 - d. 0.9082 - 4. The yellow light emitted by a sodium vapor lamp has a wavelength equal to 589 nm. What is the frequency of this radiation? - a. $5.09 \times 10^{14} \, \text{s}^{-1}$ - b. $1.96 \times 10^3 \text{ s}^{-1}$ - c. 0.0509 s⁻¹ d. 1.96 x 10⁻¹⁵ s⁻¹ | 5. Which of the following are chemical chang (I) baking bread (II) melting solder (III) breaking of glass | es? (IV) dissolving sugar in water (V) lighting a match | |--|---| | a. I, V
b. II, III, IV
c. I, II, V
d. II, IV, V | VOCABILLARY | | 6. How many square inches are in 53.6 m ² ? a. 3.46 x 10 ² in ² b. 4.68 x 10 ⁴ in ² c. 8.31 x 10 ⁴ in ² d. 2.11 x 10 ³ in ² | HEASIMAN | | How many protons, neutrons, and electron a. 24 protons, 29 neutrons, 27 electron b. 24 protons, 26 neutrons, 21 electron c. 24 protons, 29 neutrons, 21 electron d. 29 protons, 24 neutrons, 26 electron | S ATOMIC
S STRUCTURE | | 8. Which one of the following formulas corre a. BaSO₃ barium sulfite b. KSO₄ potassium sulfate c. Na₂S disodium hyposulfite d. CuSO₄ copper(I) sulfate | ectly matches its name? | | 9. An element X combines with sulfur to form | m a compound having the formula X ₂ S ₃ . X | | could be: a. Ba b. Rb c. Si d. Al | FORMULA | | 10. The normal boiling point of liquid nitrogen in °F? | en is 77.35 K. What is the boiling point of | | a76.78 °F
b171.2 °F
c320.4 °F
d384.4 °F | ENERGY | | | | | 11. What is the formula of iron (II) hydrogen phosphate?a. Fe(HPO₄)₂ | | |---|--| | b. FeHPO ₄ | FURHINA | | c. Fe(H ₂ PO ₄) ₂ | Pantal | | d. Fe ₂ HPO ₄ | | | 12. What is the correct formula for the compound magnesium nitrate? | | | a. Mg(NO ₃) ₂ | gan; | | b. MgNO ₂ | Formula | | c. Mg(NO ₂) ₃ | and the second s | | d. $Mn(NO_3)_2$ | | | 13. What is the correct empirical formula of the compound C ₈ H ₁₆ O ₄ ? | | | a. C ₄ H ₈ O ₂ | | | b. C ₈ H ₁₆ O ₄ | FORMULA | | c. C ₂ H ₄ O ₂ | - * | | d. C ₂ H ₄ O | | | d. C ₂ 140 | | | 14. If 0.50 mole C ₈ H ₁₆ O ₄ is completely decomposed into its constituer | nt elements, how | | many moles of hydrogen gas (H ₂) would be produced? | 8 | | a. 16.0 moles | HOLE | | b. 8.0 moles | | | c. 4.0 moles | | | d. 0.5 moles | | | 15. If 0.50 mole C ₈ H ₁₆ O ₄ is completely decomposed into its constitue | nt elements, how | | many grams of carbon would be produced? | | | a. 96 g | KOLE | | b. 48 g | | | c. 4.8 g | | | d. 4.0 g | | | 16. What is the formula mass of magnesium phosphite, Mg ₃ (PO ₃) ₂ ? | | | a. 71.7 | Hove | | b. 182.3 | • | | c. 230.9 | | | d. 309.9 | | | 17. When 33.0 mg of an unknown compound was submitted for elem | ental analysis, it | | contained 21.60 mg carbon (C), 3.00 mg hydrogen (H), and 8.40 mg | | | is the empirical formula of this unknown compound? | | | → | MOLE | | A Camen | Lat of Chan | | a. C ₃ H ₅ N
b. C ₂ oH ₂ N ₂ c | in the second | | b. C _{1.8} H ₃ N _{0.6} | de promotion | | | | | 18. When the equation be chloride (BaCl ₂)? | low is properly bala | nced, what is the c | coefficient of barium | |---|---|--|-------------------------------| | • |) + Ba ₃ (PO ₄) _{2(aq)} — | \Rightarrow AlPO _{4(s)} + BaO | Cl _{2(aq)} REACTIONS | | | | duced? | _ | | a. 0.600 g
b. 0.798 g
c. 1.200 g
d. 33.51 g | | | STOICHIONETRY | | 20. When 14.0 g cyclohes C ₆ H ₁ | cane reacts with 14.
$_{2(s)} + Cl_{2(g)} \longrightarrow$ | _ | Cl(g) | | | Substance | Molecular
weight | | | | C ₆ H ₁₂ | 84.0 | | | | Cl ₂ | 70.9 | | | | C ₆ H ₁₁ Cl | 118.5 | | | What is the maximum num | mber of grams of ch | llorocyclohexane t | that could be produced? | | a. 19.75 g
b. 21.00 g | | | STOUGHOUSTRY | 21. How many grams of calcium bromide (CaBr₂, MW = 200.) must be used to prepare 22. What is the concentration of the final solution when 500. mL of 0.400 M CaBr₂ SUCUTIONS S CLOTIONS c. 23.40 g d. 43.15 g a. 20.0 g b. 40.0 g c. 60.0 g d. 80.0 g solution is diluted to 1.60 L? a. 0.125 M b. 0.400 M c. 1.28 M d. 25.0 M 500. mL of 0.400 M CaBr₂ solution? - 23. What is the concentration of the solution obtained when 200. mL of a 0.600 M solution of sulfuric acid (H₂SO₄, MW = 98.1) is added to 400. mL of a 1.2 M solution of sulfuric acid to make a total volume of 600. mL? - a. 0.200 M - b. 0.800 M - c. 0.480 M - d. 1.00 M - 24. What is the concentration of a solution of hydrochloric acid if 37.50 mL of a 0.200 M solution of sodium hydroxide is necessary to neutralize a 50.00 mL aliquot? | Substance | Molecular | | |-----------|-----------|--| | | weight | | | HCl | 36.5 | | | NaOH | 40.0 | | SOLUTIONS - a. 0.267 M - b. 0.205 M - c. 0.188 M - d. 0.150 M - 25. Which of the following 0.10 M aqueous solutions would have the lowest freezing point? - a. KBr - b. Na₂SO₄ - c. NaNO₃ - d. MgSO₄ - 28. Which of the following describes bromine at room temperature? - a. reddish-brown liquid - b. greenish-yellow liquid - c. greenish-yellow gas - d. violet gas Solurious PERIODIC TABLE 29. Given the following two reactions: $$C_{\text{(graphite)}} + O_{2(g)} \longrightarrow CO_{2(g)}$$ $$\Delta H = -393.5 \text{ kJ}$$ $$2 \operatorname{Fe}_{(s)} + 3/2 \operatorname{O}_{2(g)} \longrightarrow \operatorname{Fe}_2 \operatorname{O}_{3(s)}$$ $$\Delta H = -824.2 \text{ kJ}$$ Calculate the enthalpy change for $$2 \text{ Fe}_2\text{O}_{3(s)} + 3 \text{ C}_{(graphite)} \rightarrow 4 \text{ Fe}_{(s)} + 3 \text{ CO}_{2(g)}$$ a. $$\Delta H = +467.9 \text{ kJ}$$ b. $$\Delta H = -467.9 \text{ kJ}$$ c. $$\Delta H = +430.7 \text{ kJ}$$ d. $$\Delta H = -430.7 \text{ kJ}$$ 30. The symbol for cesium is b. Cm c. Cs d. Se - 31. What do phosphorus, sulfur and oxygen have in common? - a. outer shell electron configuration b. pyrophoric behavior c. semimetallic behavior d. existence of allotropic forms 32. What is the name of the product of the following reaction: $$2 K_{(s)} + O_{2(g)} \longrightarrow K_2O_{2(s)}$$ - a. potassium dioxide - b. potassium peroxide - c. potassium oxide - d. potassium superoxide - FORMULA - 33. What is the temperature change when 4.00 g Fe absorbs 55.5 J? [specific heat of Fe = $$0.4998 \text{ J/g} \cdot ^{\circ}\text{C}$$] - a. 27.8°C - b. 55.5°C - c. 111.0°C - d. insufficient information ENERGY | 34. The combustion of methane is given by the following reaction: | | |--|--------------------------------| | $CH_{4(g)} + 2 O_{2(g)} \longrightarrow CO_{2(g)} + 2 H_2O_{(aq)}$ | $\Delta H = -890.4 \text{ kJ}$ | | How much heat is evolved in the combustion of 2.00 g methane? a. 55.7 kJ b. 111 kJ c. 890. kJ d. 1780 kJ | STOCHIOHETRY | | 35. Which one of the following electron configurations represents Cr a. [Ar]4s²3d⁴ b. [Ar]4s²3d² c. [Ar]3d⁴ d. [Ar]3d² | ELECTRUM CONFIRMATILY | | 36. Which of the following most likely represents a negative entropy a. $H_2O_{(aq)} \longrightarrow H_2O_{(g)}$ b. $MgCO_{3(s)} \longrightarrow MgO_{(s)} + CO_{2(g)}$ c. $Zn_{(s)} + 2 HCl_{(aq)} \longrightarrow ZnCl_{2(aq)} + H_{2(g)}$ d. $NaCl_{(aq)} + AgNO_{3(aq)} \longrightarrow NaNO_{3(aq)} + AgCl_{(s)}$ | change? | | 38. Which of the following elements has the lowest first ionization en a. antimony b. arsenic c. nitrogen d. phosphorus | PERIODIC TYUENDS | | 39. Which of the following isoelectronic species is the largest? | s south a Ph | | Kr Rb ⁺ Se ²⁻ Sr ²⁺ a. Kr b. Rb ⁺ c. Se ²⁻ d. Sr ²⁺ | PERIODIC TRENDS | 40. The chemical properties of an element correlate best with - a. its state of matter. - b. ionic radii. - c. atomic weight. d. electron configuration. | 41. Arrange the following radiation in order of increasing energy microwave ultraviolet green light orange light | | |--|-------------------------| | a. microwave < orange light < green light < ultraviolet b. ultraviolet < microwave < green light < orange light c. orange light < green light < microwave < ultraviolet d. ultraviolet < green light < orange light < microwave | QUANTUM | | 42. Which of the following bonds is the most polar? | | | a. H-H | | | b. H-C | VSEPR | | c. C-F | | | d. C-Cl | | | 43. Which of the following compounds is most ionic? | | | a. N ₂ O | | | a. Cl ₂ O ₇ | USEPP BONDING | | a. P2O5 | | | a. Na ₂ O | | | 44. Which of the following terms best describes CaO? | | | a. an acidic oxide | 0 | | b. a basic oxide | Peruspie :
TABLE | | c. an amphoteric oxide | TAGE | | d. a neutral oxide | | | | | | 45. Which element below has the most metallic character? | | | a. As | 0 | | b. Sb | PERLIADIC
TABLE | | c. P
d. Bi | TASCE | | u. Bi | | | 46. Which elements combine with the alkali metals to form ion | nic compounds? | | a. alkaline earth metals | 7 | | b. d-transition series elements | (equippe | | c. noble gases | TABLE | | d. halogens | a c son man | | 47. What is the formal charge on the indicated nitrogen in the N=N=O | neutral molecule below? | | a. 0 | | | b1 | | | c. +1 | | | d. +2 | | | | | | 48. What do the following speci | ies have i | n comm | on? | |---------------------------------|------------|--------|---------| | | CS_2 | CO_2 | CH_2O | | a. All are gases are room | temperat | ure. | | VSEPR - b. All contain pi (p) bonding. - c. All are isoelectronic with each other. - d. All have no dipole moment. - 49. How many lone pairs are found in the entire molecule PBr₅? VISEPR - a. none - b. 5 - c. 15 - d. 20 - 50. A molecule has the following properties: The molecule contains two different halogens. The molecule has no dipole moment. The molecule does not form hydrogen bonds. USEFR What molecule could it be? - a. OF₂ - b. IBr₃ - c. PCl₂Br - d. IBr4 - 51. Predict the order for increasing O-O bond energy of the species $$O_2 O_2^+ O_2^{2-}$$ VSEPR a. $$O_2 < O_2^{2^-} < O_2^+$$ b. $O_2^+ < O_2^{2^-} < O_2$ c. $O_2 < O_2^+ < O_2^{2^-}$ d. $O_2^{2^-} < O_2 < O_2^+$ c. $$O_2 < O_2^{+} < O_2^{2}$$ d. $$O_2^2 < O_2 < O_2^2$$ - 52. Pi bonding can be found in which of the following? - VSEPR - a. carbon monoxide - b. acetone - c. sulfur dioxide - d. All of the above molecules contain pi bonding. 53. Linear geometry best describes which of the following molecules? - a. acetylene (C₂H₂) - b. ozone (O₃) - c. hydrogen peroxide - d. All of the above molecules are linear. 54. How many sigma and pi bonds does formaldehyde (CH₂O) have? - a. 3 sigma bonds and no pi bond - b. 3 sigma bonds and 1 pi bond - c. 2 sigma bonds and 1 pi bond - d. 2 sigma bonds and 2 pi bonds 55. A molecule can be described by the following major characteristics: The molecule contains at least one sp² hybrid orbital. The molecule contains at least one sp hybrid orbital. The molecule contains no triple bonds. Which molecule could it be? USEPR USEPR USEPR - a. C₂H₂ (acetylene) - b. C₃H₄ (allene) - c. C₆H₆ (benzene) - d. C₆H₅OH (phenol) 58. If 148 g SnO₂ (MW = 150.69) are reacted with excess carbon at 0°C and 1.0 atm, what volume of carbon dioxide is evolved? $$SnO_{2(s)} + C_{(s)} \longrightarrow CO_{2(g)} + Sn_{(s)}$$ - a. 1.0 L - b. 11 L - c. 22 L - d. 150 L STOCHIOMETRY GAS HWS The following information applies to questions 60 and 61. An experiment is performed in which 1.0 J of heat is added to 10. g ethanol (C_2H_5OH). The same amount of heat is added to 10. g benzene (C_6H_6) and the following temperature changes are observed: | Substance | ΔΤ | |-----------|----------| | ethanol | +0.041 K | | benzene | +0.057 K | ENHW - 60. Which compound has the larger specific heat? - a. ethanol - b. benzene - c. They have the same specific heat. - d. It cannot be determined from the information given. - 61. Which has the larger molar heat capacity? - a. ethanol - b. benzene ENERMY - c. They have the same molar heat capacity. - d. It cannot be determined from the information given. - 63. If 1.0 L each of oxygen and hydrogen are reacted at constant temperature and pressure, how much water vapor will be produced? - a. 1.0 L - b. 2.0 L - c. 0.5 L - d. 4.0 L STOICHIONENCY - 66. The rise of a liquid in a thin tube against the force of gravity is called - a. capillary action. - b. dispersion forces. - c. surface tension. - d. viscosity. BONDING - 70. An aqueous solution of calcium chloride is 15.0% by mass CaCl₂. If the solution has a density of 1.12 g/mL, what is the molarity of the solution? - a. 1.28 M - b. 1.35 M - c. 1.51 M - d. 1.68 M SOLUTIONS - 72. An endothermic process always - a. corresponds to a negative enthalpy change. - b. involves an absorption of heat by the system. - c. corresponds to a temperature increase. - d. involves a release of heat by the system. ENEKA The following reaction applies to questions 91 and 92. $$14 \text{ H}^+ + \text{Cr}_2\text{O}_7^{2-} + 3 \text{ Ni} \longrightarrow 3\text{Ni}^{2+} + 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$$ - 91. Identify the oxidizing agent in the reaction above. - a. H - b. Cr₂O₇²- - c. Ni - d. Cr3+ - 92. Which substance is oxidized in the reaction above. - a. H - b. Cr₂O₇² - c. Cr³⁺ - d. Ni CEACTIONS REACTIONS - 93. What is the oxidation number of manganese in KMnO₄? - a. +3 - b. +5 - c. +7 - d. +9 - FURMULA - 94. What is the stoichiometric coefficient for ZnS(s) in the following equation when it is correctly balanced? Assume acidic conditions. $ZnS_{(s)} + NO_{3(aq)} \longrightarrow Zn^{2+}_{(aq)} + S_{(s)} + NO_{(g)}$ - a. 1 - b. 2 - c. 3 - d. 4 - 95. What is the oxidation number of gold in K₃[Au(CN)₄]? - a. +1 - b. +2 - c. +3 - d. +4 (LEACTION) FOUND